Beta-alanyl-L-histidine

Beta-alanyl-L-histidine (Carnosine) is one of the active QoL Enhancer ™ ingredients in the proprietary Molecular Action Blend ™ of Ypera ®.

Introduction

Carnosine (β-Alanyl-L-histidine or beta-alanyl-L-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal ion chelation, and antioxidant capacity as well as the ability to protect against the formation of advanced glycation and lipoxidation end-products. 

For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress is involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also, the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into L-histidine and -alanine is discussed. The carnosine system has evolved as a pluripotent solution to many homeostatic challenges. (105)

Specification

Nomenclature

IUPAC name: (2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid

Chemical name: β-Alanyl-L-histidine or beta-alanyl-L-histidine

CAS Registry number: 305-84-0

Structure

Structural formula

Beta-alanyl-L-histidine (Carnosine) is one of the active ingredients of Ypera ®

Molecular formula: C9H14N4O3

Molecular mass: 226.24 g·mol−1

General Properties

Appearance: Crystalline solid

Melting point: 253 °C (487 °F; 526 K) (decomposition)

Safety

The LD50 in oral intake of mice is = >14930 mg/kg. This is a normally unreachable dose for humans consuming carnosine containing supplements. Therefore, the supplementation is generally considered as uncritical.

L-Carnosine is not listed as a carcinogen by ACGIH, IARC, NTP, or CA Prop 65.

Antioxidant Activity

The antioxidant activity of carnosine was initially studied by Boldyrev et al. since the 1980s (106 – 110). Later on, several studies were reported, showing a direct and indirect antioxidant activity of carnosine, as demonstrated in several in vitro studies (see below). The antioxidant activity of carnosine is mediated by different mechanisms involving metal ion chelation and scavenging reactive oxygen species (ROS) and peroxyl radicals.

At physiological concentrations, carnosine was found to directly react with superoxide anion like superoxide dismutase (SOD), and the constant for the interaction of carnosine with O2· was calculated to be 105 M 1·s 1 and not significantly different in respect to that of ascorbic acid and -tocopherol (111). The mechanism of interaction of carnosine with superoxide radicals was studied by Pavlov et al. (112) in water solutions and is based on the ability of carnosine to form a charge-transfer complex with the superoxide radical which changes the reactivity of O2·. Carnosine is also an effective quencher of other ROS such as hydroxyl radicals (·OH). In particular, evidence was provided through pulse- radiolysis (113), indicating that carnosine is an adequate scavenger of OH radicals.

Inhibiting Protein Carbonylisation and Glycolysation

Several in vitro and in vivo studies have reported the ability of carnosine and related peptides to prevent the formation of advanced lipoxidation end-products (ALEs) and advanced glycoxidation end- products (AGEs). These compounds are both involved in the aging process as well as in the onset and propagation of several oxidative-based diseases such as diabetes, atherosclerosis, and Alzheimer’s disease.

Hipkiss first reported a series of papers showing the ability of carnosine to inhibit AGEs and ALEs formation induced by different precursors, including reducing sugars such as glucose (114), deoxyribose, ribose, fructose(115), and reactive carbonyls such as malondialdehyde (116117), glyoxal, methylglyoxal (118), acetaldehyde, and formaldehyde (119).

Carnosin Content in the Muscle

An essential aspect of the physiological role of carnosine in skeletal muscle is related to contractile function in general and more specifically to excitation-contraction coupling (calcium handling) as well as to the protection against exercise-induced acidosis (pH buffering). 

Thus possessing high muscle carnosine content may be advantageous for high-intensity exercise capacity. Below we will discuss the determinants of muscle carnosine content in humans, its implications for exercise capacity, as well as the nutritional strategies that influence muscle carnosine content.

There is a considerable variation in muscle carnosine con- tent among humans, as three- to fourfold differences have been demonstrated between the lowest ( 10 mmol/kg dry wt) and highest ( 40 mmol/kg dry wt) reported levels in humans (120) (121122) (123). Despite the sizeable interindividual variation, the intraindividual difference is somewhat limited. Re- peated measurements of muscle carnosine over time in the same person displays only small fluctuations (124), and very high correlations have been found for muscle carnosine content within monozygotic twin pairs (125).

It has been suggested that exercise training can also alter muscle carnosine content. However, most short-term training intervention studies seem to agree that a few weeks of training will not stimulate carnosine accumulation in muscle (126–129). 

It remains to be established whether long-term (months to years) training intervention can modulate muscle carnosine content, especially when this chronic exercise intervention is possibly accompanied by a shift in fiber type composition (130).

Carnosine in Sports Nutrition

The above-described carnosine supplementation-induced muscle carnosine loading strategy is beneficial for certain types of exercise performance. In 2012, Hill et al. (131) reported that the capacity to cycle at 110% of maximal power (Wmax) was improved by 13 and 16% following, respectively, 4 and 10 wk of chronic carnosine supplementation in healthy untrained volunteers. 

Later studies confirmed that ergogenic effects could also be obtained in well-trained athletes, such as cyclists and rowers (132) (133).

Conclusion

Beta-alanyl-L-histidine (Carnosine) is one of the active QoL Enhancer ™ ingredients in the proprietary Molecular Action Blend ™ of  Ypera ®.

Beneficial Effects:

  • Prevention of muscle damage (105115134135)
  • Muscle nutrition while performing (105124132)
  • Anti-oxidative effect (105132136137)
  • Enhances cognitive capacity (105134)
  • Alzheimer’s disease (119)
  • Anti-aging (105138)
  • Heart damage (135)
  • Cancer-prevention (105114115)
  • Diabetes Mellitus (114138)
  • Eyesight (139)
  • Kidney disease (140)
  • Neurological disorders (105134141)

Abbreviations

Carnosine (Beta-alanyl-L-histidine)


Literature

  1. M. Gatt, J. Macfie, Br J Surg 92, 494 (2005).
  2. K. Holte, H. Kehlet, J Am Coll Surg 202, 971 (2006).
  3. M. Kremer, A. Ulrich, M. W. Büchler, W. Uhl, Recent Results Cancer Res 165, 14 (2005).
  4. P. Mattei, J. L. Rombeau, World J Surg 30, 1382 (2006).
  5. J. Nygren et al.Clin Nutr 24, 455 (2005).
  6. G. A. van Mastrigt, J. G. Maessen, J. Heijmans, J. L. Severens, M. H. Prins, Crit Care Med 34, 1624 (2006).
  7. C. J. Walter, A. Smith, P. Guillou, Ann R Coll Surg Engl 88, 191 (2006).
  8. L. C. Azevedo, M. Janiszewski, F. G. Soriano, F. R. Laurindo, Endocr Metab Immune DisordDrug Targets 6, 159 (2006).
  9. E. M. Bulger, R. V. Maier, Arch Surg 136, 1201 (2001).
  10. E. Crimi et al.Free Radic Biol Med 40, 398 (2006).
  11. J. Macdonald, H. F. Galley, N. R. Webster, Br J Anaesth 90, 221 (2003).
  12. A. B. Nathens et al.Ann Surg 236, 814 (2002).
  13. K. M. Oldham, P. E. Bowen, J Am Diet Assoc 98, 1001 (1998).
  14. S. Sakaguchi, S. Furusawa, FEMS Immunol Med Microbiol 47, 167 (2006).
  15. R. K. Thimmulappa et al.J Clin Invest 116, 984 (2006).
  16. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Chem Biol Interact 160, 1 (2006).
  17. V. M. Victor, M. Rocha, M. De la Fuente, Int Immunopharmacol 4, 327 (2004).
  18. V. M. Victor, M. Rocha, J. V. Esplugues, M. De la Fuente, Curr Pharm Des 11, 3141 (2005).
  19. F. Bozzetti, Nutrition 18, 953 (2002).
  20. M. Braga, L. Gianotti, JPEN J Parenter Enteral Nutr 29, S57 (2005).
  21. H. Kehlet, Br J Anaesth 78, 606 (1997).
  22. H. Kehlet, D. W. Wilmore, Am J Surg 183, 630 (2002).
  23. J. Rosenberg, H. Kehlet, Ugeskr Laeger 163, 908 (2001).
  24. D. H. Harpole et al.Ann Thorac Surg 61, 977 (1996).
  25. R. L. Doyle, Chest 115, 77S (1999).
  26. G. R. McAnulty, H. J. Robertshaw, G. M. Hall, Br J Anaesth 85, 80 (2000).
  27. D. L. Waitzberg, Y. C. Baxter, Curr Opin Clin Nutr Metab Care 7, 189 (2004).
  28. B. I. Blomqvist, F. Hammarqvist, A. von der Decken, J. Wernerman, Metabolism 44, 1215 (1995).
  29. C. Coudray-Lucas, H. Le Bever, L. Cynober, J. P. De Bandt, H. Carsin, Crit Care Med 28, 1772 (2000).
  30. R. Filip, S. G. Pierzynowski, J Anim Physiol Anim Nutr (Berl) 92, 182 (2008).
  31. P. Junghans et al.Clin Nutr 25, 489 (2006).
  32. M. Dabek et al.J Anim Physiol Anim Nutr (Berl) 89, 419 (2005).
  33. C. Aussel, C. Coudray-Lucas, E. Lasnier, L. Cynober, O. G. Ekindjian, Cell Biol Int 20, 359 (1996).
  34. R. J. Schaur, W. Schreibmayer, H. J. Semmelrock, H. M. Tillian, E. Schauenstein, J Cancer Res Clin Oncol 93, 293 (1979).
  35. L. Kronberger et al.J Cancer Res Clin Oncol 97, 295 (1980).
  36. E. Roth et al.Clin Sci (Lond) 80, 625 (1991).
  37. A. Jeppsson et al.Ann Thorac Surg 65, 684 (1998).
  38. J. Wernerman, F. Hammarqvist, E. Vinnars, Lancet 335, 701 (1990).
  39. L. A. Cynober, Curr Opin Clin Nutr Metab Care 2, 33 (1999).
  40. F. Hammarqvist, J. Wernerman, A. von der Decken, E. Vinnars, Surgery 109, 28 (1991).
  41. S. Velvizhi, K. B. Dakshayani, P. Subramanian, Nutrition 18, 747 (2002).
  42. A. V. Kozhukhar, I. M. Yasinska, V. V. Sumbayev, Biochimie 88, 411 (2006).
  43. E. D. MacKenzie et al.Mol Cell Biol 27, 3282 (2007).
  44. L. G. Baggetto, Biochimie 74, 959 (1992).
  45. A. Perera et al.Free Radic Res 26, 145 (1997).
  46. R. M. Edwards, E. Stack, W. Trizna, J Pharmacol Exp Ther 281, 1059 (1997).
  47. U. Kjellman et al.Lancet 345, 552 (1995).
  48. V. Matzi et al.Eur J Cardiothorac Surg 32, 776 (2007).
  49. D. E. van Hoorn et al.JPEN J Parenter Enteral Nutr 30, 302 (2006).
  50. K. H. Wagner, S. Reichhold, K. Koschutnig, S. Chériot, C. Billaud, Mol Nutr Food Res 51, 496 (2007).
  51. J. M. Müller, P. Thul, B. Ablassmaier, Chirurg 68, 574 (1997).
  52. M. A. Schwarz, J. F. Greilberger, M. M. Lamacie…, Canadian Journal of … 28, S132 (2012).
  53. E. Dworschák, Crit Rev Food Sci Nutr 13, 1 (1980).
  54. K. Michail et al.Anal Bioanal Chem 387, 2801 (2007).
  55. C. Schneid et al.Metabolism 52, 344 (2003).
  56. J. Westhuyzen et al.J Thorac Cardiovasc Surg 113, 942 (1997).
  57. M. Zeppetzauer, M. Faulhaber, J. Greilberger, M. Greilberger, M. Burtscher, Nutraceuticals: Proven and New 1, 25 (2009).
  58. M. Bartels et al.Clin Nutr 23, 1360 (2004).
  59. P. Déchelotte et al.Crit Care Med 34, 598 (2006).
  60. Z. M. Jian et al.JPEN J Parenter Enteral Nutr 23, S62 (1999).
  61. I. Okpala, Expert Opin Investig Drugs 15, 833 (2006).
  62. D. L. Waitzberg et al.World J Surg 30, 1592 (2006).
  63. M. Jeevanandam, S. R. Petersen, Clin Nutr 18, 209 (1999).
  64. T. Le Bricon et al.Am J Clin Nutr 65, 512 (1997).
  65. F. Blonde-Cynober, C. Aussel, L. Cynober, Nutrition 19, 73 (2003).
  66. J. P. De Bandt et al.J Nutr 128, 563 (1998).
  67. J. Le Boucher et al.Nutrition 15, 773 (1999).
  68. A. A. C. Federal Institute for Risk Assessment (Federal Ministry for Food, P. Germany,
  69. N. T. Program, National Toxicology Program … (2010).
  70. R. J. Ulbricht, S. J. Northup, J. A. Thomas, Toxicological Sciences (1984).
  71. E. Jellum, H. C. Børresen, L. Eldjarn, Clinica Chimica Acta (1973).
  72. A. Rasmussen, I. Hessov…, Acta pharmacologica et … (1982).
  73. K. Lang, W. Kieckebusch, K. H. Bässler…, Z Ernahrungswiss. 10, 97 (1970).
  74. K. Lang, H. Bickel, Zeitschrift für Ernährungswissenschaft (1970).
  75. K. Lang, W. Kieckebusch, K. H. Bässler, W. Griem…, Zeitschrift für … (1970).
  76. G. Czok, H. Förster, Z Ernahrungswiss Suppl 15, 103 (1973).
  77. H. Klimmek, Wehrmed. Mschr 2, 44 (1978).
  78. L. Nässberger, Hum Exp Toxicol 9, 211 (1990).
  79. B. H. Monien, H. Frank, A. Seidel, H. Glatt, Chem Res Toxicol 22, 1123 (2009).
  80. Y. J. Surh, A. Liem, J. A. Miller, S. R. Tannenbaum, Carcinogenesis 15, 2375 (1994).
  81. H. Xiao, K. L. Parkin, Nutr Cancer 55, 210 (2006).
  82. H. Xiao, K. L. Parkin, Phytochemistry 68, 1059 (2007).
  83. I. Florin, L. Rutberg, M. Curvall, C. R. Enzell, Toxicology 15, 219 (1980).
  84. C. Janzowski, V. Glaab, E. Samimi, J. Schlatter…, Food and Chemical … (2000).
  85. Y. J. Surh, S. R. Tannenbaum, Chem Res Toxicol 7, 313 (1994).
  86. Y. Nishi, Y. Miyakawa, K. Kato, Mutat Res 227, 117 (1989).
  87. L. J. Durling, L. Busk, B. E. Hellman, Food Chem Toxicol 47, 880 (2009).
  88. H. Glatt, H. Schneider, Y. Liu, Mutat Res 580, 41 (2005).
  89. S. B. Kim, F. Hayase, H. Kato, Mutat Res 177, 9 (1987).
  90. A. Hosono, Usman, R. Ohba, Biosci Biotechnol Biochem 61, 424 (1997).
  91. Y. Mizushina et al.Arch Biochem Biophys 446, 69 (2006).
  92. M. C. Archer et al.Environ Health Perspect 98, 195 (1992).
  93. W. R. Bruce et al.Mutat Res 290, 111 (1993).
  94. X. M. Zhang et al.Carcinogenesis 14, 773 (1993).
  95. Y. Miyakawa et al.Carcinogenesis 12, 1169 (1991).
  96. S. Burg, Orphan-Drug-Designation-FDA-Anti-Sickling (2006).
  97. G. Czok, Z Ernahrungswiss 10, 103 (1970).
  98. J. E. Germond, G. Philippossian, U. Richli, I. Bracco, M. J. Arnaud, J Toxicol Environ Health 22, 79 (1987).
  99. V. B. Godfrey, L. J. Chen, R. J. Griffin, E. H. Lebetkin, L. T. Burka, J Toxicol Environ Health A57, 199 (1999).
  100. R. L. Prior, X. Wu, L. Gu, J Agric Food Chem 54, 3744 (2006).
  101. Y. C. Lee, M. Shlyankevich, H. K. Jeong, J. S. Douglas, Y. J. Surh, Biochem Biophys ResCommun 209, 996 (1995).
  102. T. Husøy et al.Food Chem Toxicol 46, 3697 (2008).
  103. B. I. Blomqvist, F. Hammarqvist, A. von der Decken, J. Wernerman, Metabolism 44, 1215 (1995).
  104. H. Gatterer et al.Int J Sports Med 34, 1 (2013).
  105. A. A. Boldyrev, G. Aldini, W. Derave, Physiol Rev 93, 1803 (2013).
  106. A. A. Boldyrev, A. M. Dupin, A. Y. Bunin, M. A. Babizhaev, S. E. Severin, Biochem Int 15, 1105 (1987).
  107. A. A. Boldyrev, A. M. Dupin, E. V. Pindel, S. E. Severin, Comp Biochem Physiol B 89, 245 (1988).
  108. A. A. Boldyrev, A. M. Dupin, M. Siambela, S. L. Stvolinsky, Comp Biochem Physiol B 89, 197 (1988).
  109. A. A. Boldyrev et al.Comp Biochem Physiol B 94, 237 (1989).
  110. A. A. Boldyrev, Biochemistry (Mosc) 77, 313 (2012).
  111. C. Lamont, D. J. Miller, J Physiol 454, 421 (1992).
  112. A. R. Pavlov, A. A. Revina, A. M. Dupin, A. A. Boldyrev, A. I. Yaropolov, Biochim Biophys Acta1157, 304 (1993).
  113. M. Tamba, A. Torreggiani, Int J Radiat Biol 74, 333 (1998).
  114. A. R. Hipkiss, J. Michaelis, P. Syrris, S. Kumar, Y. Lam, Biochem Soc Trans 22, 399S (1994).
  115. A. R. Hipkiss, J. Michaelis, P. Syrris, FEBS Lett 371, 81 (1995).
  116. A. R. Hipkiss, J. E. Preston, D. T. Himswoth, V. C. Worthington, N. J. Abbot, Neurosci Lett 238, 135 (1997).
  117. A. R. Hipkiss, V. C. Worthington, D. T. Himsworth, W. Herwig, Biochim Biophys Acta 1380, 46 (1998).
  118. A. R. Hipkiss, H. Chana, Biochem Biophys Res Commun 248, 28 (1998).
  119. A. R. Hipkiss et al.Ann N Y Acad Sci 854, 37 (1998).
  120. I. Everaert et al.Amino Acids 40, 1221 (2011).
  121. W. Derave et al.J Appl Physiol (1985) 103, 1736 (2007).
  122. M. J. Tallon, R. C. Harris, N. Maffulli, M. A. Tarnopolsky, Biogerontology 8, 129 (2007).
  123. M. J. Tallon, R. C. Harris, L. H. Boobis, J. L. Fallowfield, J. A. Wise, J Strength Cond Res 19,725 (2005).
  124. A. Baguet et al.J Appl Physiol (1985) 106, 837 (2009).
  125. A. Baguet, I. Everaert, E. Achten, M. Thomis, W. Derave, Amino Acids 43, 13 (2012).
  126. A. Baguet et al.Eur J Appl Physiol 111, 2571 (2011).
  127. I. P. Kendrick et al.Amino Acids 34, 547 (2008).
  128. I. P. Kendrick et al.Eur J Appl Physiol 106, 131 (2009).
  129. A. F. Mannion, P. M. Jakeman, P. L. Willan, Eur J Appl Physiol Occup Physiol 68, 356 (1994).
  130. S. Schiaffino, C. Reggiani, Physiol Rev 91, 1447 (2011).
  131. T. L. Hill, A. T. Blikslager, Am J Vet Res 73, 659 (2012).
  132. A. Baguet, J. Bourgois, L. Vanhee, E. Achten, W. Derave, J Appl Physiol (1985) 109, 1096 (2010).
  133. R. Van Thienen et al.Med Sci Sports Exerc 41, 898 (2009).
  134. J. N. Baraniuk, S. El-Amin, R. Corey, R. Rayhan, C. Timbol, Glob J Health Sci 5, 69 (2013).
  135. B. de Courten et al.PLoS One 10, e0138707 (2015).
  136. O. A. Barski et al.Arterioscler Thromb Vasc Biol 33, 1162 (2013).
  137. P. S. Manhiani, J. K. Northcutt, I. Han, W. C. Bridges, P. L. Dawson, Poult Sci 92, 444 (2013).
  138. Y. Liu et al.PLoS One 10, e0138646 (2015).
  139. M. A. Babizhayev, Y. E. Yegorov, Recent Pat Drug Deliv Formul 9, 1 (2015).
  140. T. Fujii et al.Biol Pharm Bull 28, 361 (2005).
  141. O. N. Bae et al.Stroke 44, 205 (2013).

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease. The content on this website is not medical advice, and is intended for informational and educational purposes only.


© 2019 Ypera Inc. All Rights Reserved.

© Ypera 2020 - All rights reserved.

* These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.